83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An ultra-wideband reflective polarization conversion metasurface and its application in RCS reduction

ORCID Icon, , , , &
Pages 253-265 | Received 18 May 2024, Accepted 15 Jun 2024, Published online: 20 Jun 2024
 

ABSTRACT

In this work, an ultra-wideband reflective polarization conversion metasurface (PCM) is proposed at first. Because the PCM is an anisotropic structure that is symmetric with respect to both x- and y-axes, and the reflection phase difference under x- and y-polarized incidences is close to 180° in an ultra-wide frequency range, the PCM can achieve both linear polarization conversion and circular-polarization (CP) maintaining reflection in the ultra-wide frequency band from 8.3 to 41.3 GHz except for near the frequency point of 38.8 GHz. Moreover, when its unit cell structure is rotated by 90°, its cross-polarized reflection coefficient under LP incidence, together with the co-polarized reflection coefficient under CP incidence, will be changed by almost 180° in phase. Thus, based on the PCM, an ultra-wideband coding diffusion metasurface (CDM) is further proposed for radar cross section (RCS) reduction. The simulation and experiment results indicate that the CDM can achieve effective RCS reduction in the ultra-wide frequency band of 8.2–41.7 GHz under normal incidence with arbitrary polarization; in addition, an ultra-wideband RCS reduction can still be realized under oblique incidence with an incident angle less than 45°, which shows that the CDM is of good application value in radar stealth technology.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability

Data available on request from the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [62072378]; Key Research and Development Plan of Xianyang City [L2023-ZDYF-XCZX-006].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 396.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.