2,430
Views
140
CrossRef citations to date
0
Altmetric
Original Articles

Methods for Minimizing Segregation: A Review

&
Pages 321-337 | Published online: 17 Aug 2010
 

Abstract

Segregation, as a common problem in particulate material industries, has been studied by many researchers from different science and engineering disciplines within academia and numerous industries. Various patterns and factors influencing segregation, as well as corresponding methods to minimize segregation, are discussed in this article. Universal methods used to minimize segregation mainly include improvement of material properties (i.e., narrowing size distribution spread, reducing absolute size, and avoiding irregularly shaped particles), proper selection of handling equipment and operational parameters (i.e., lowering free-fall height and employing mass flow bins), and proper control of material handling environmental conditions (i.e., minimizing vibration and maintaining humidity). For various material handling processes such as filling/deposition, discharging, conveying, and mixing, appropriate methods exist. For instance, various inserts have been used to minimize segregation during filling or discharging processes. Based on detailed review in this article, four fundamental segregation mechanisms—trajectory, sieving, fluidization, and agglomeration—have been identified. In addition, the current limitations identified precluding advancement of research on segregation include: (1) application-oriented research that limits researchers from capturing the larger picture of segregation; (2) use of ideal experimental materials that prevent the application of test results to industrial processes; and (3) all segregation measurements conducted so far being restricted to time-independent conditions described by a coefficient that is clearly not applicable to the entire time-varying process. To overcome these limitations, the second-generation primary segregation shear cell (PSSC-II) with novel and flexible design features models the sieving and percolation segregation mechanisms. This new approach could serve as an example to develop similar testers and much needed multi-scale constitutive models for the other three fundamental segregation mechanisms.

The authors would like to thank the Pennsylvania Department of Agriculture and the Pennsylvania Agricultural Experiment Station for providing funding for this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.