109
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

FE Analysis of Shearing of Granular Bodies in a Direct Shear Box

Pages 229-248 | Published online: 24 Feb 2007
 

ABSTRACT

A plane strain analysis of a deformation and stress field in cohesionless granular bodies during shearing in a direct shear tester was performed with a finite element method on the basis of a hypoplastic constitutive law enhanced by polar quantities: rotations, curvatures, couple stresses, and a mean grain diameter used as characteristic length. The constitutive law takes into account the effect of pressure, void ratio, direction of deformation rate, mean grain diameter, and grain roughness on the material behavior. The FE calculations were carried out with a different initial void ratio, vertical load, mean grain diameter, and specimen length. Attention was focused on the size effect caused by the size of microstructure related to the specimen dimensions and the effect of side boundaries on the shear zone formation. The FE results show that the thickness of the shear zone increases with increasing initial void ratio, pressure level, mean grain diameter, and specimen length. Due to the effect of boundary conditions, the thickness changes along a horizontal midsection (it is widest in the mid-region).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.