150
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Modeling Solids Friction for Dense-Phase Pneumatic Conveying of Powders

&
Pages 444-455 | Published online: 19 Aug 2009
 

Abstract

This article results from an ongoing investigation aimed at developing a new validated test-design procedure for the accurate prediction of pressure drop for dense-phase pneumatic conveying of powders. Models for combined pressure drop coefficient (“K”) for solids-gas mixture were derived using the concept of “suspension density” by using the steady-state “straight pipe” pressure drop data between two different tapping locations of the same pipe and also for two different diameter pipes. It was observed that the derived models were different depending on the location of tapping points (for the same pipe) and selected pipe diameters. The derived models were then evaluated by predicting the pressure drop for pipelines with various diameters or lengths (69 mm I.D. × 168 m, 105 mm I.D. × 168 m, 69 mm I.D. × 554 m) for the conveying of power station fly ash. A comparison between the predicted pneumatic conveying characteristics (PCC) and the experimental plots showed that the models resulted in significant over-predictions. In the second part of the article, the “system” approach of scaleup was evaluated. “Total” pipeline pressure drop characteristics for test-rig pipelines were scaled up to predict the PCC for larger/longer pipes. It was found that the “system” approach generally resulted in grossly inaccurate predictions. It was concluded that further studies are needed for a better understanding of the solids-gas flow mechanism under dense-phase conditions.

S. S. Mallick would like to thank the University of Wollongong for the International Tuition Fee Exemption Scholarship and the University Post Graduate Award (UPA), which have enabled him to undertake Ph.D. studies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.