119
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modeling Performance of a Tangential Flow Cyclone: Effects of Secondary Outlet Geometry and Boundary Conditions

&
Pages 431-450 | Published online: 16 Aug 2012
 

Abstract

Numerical calculation of the performance of cyclones for gas-particle separation is becoming a popular tool for cyclone analysis and design. A traditionally accepted way to treat these problems is by solving the flow field and particle transport equations in the spatial domain (C1) limited by the inlet and overflow outlet cross-sections, where the flow is usually assumed fully developed, and the dust outlet cross-section. Formulation of the boundary conditions for the flow and particles’ transport at the dust outlet cross-section remains an open question. We address this problem numerically by comparing results of calculations performed by the above traditional approach, i.e., treating the problem in configuration C1, as well as in extended domains, namely those including a dust collecting bin (configuration C2) and a downcomer tubular outlet (configuration C3). Two boundary conditions at the downflow outlet were checked for each configuration, namely, a blocked outlet (zero velocity) and an open outlet (zero gas flow rate). Toward this goal, an efficient computational fluid dynamic (CFD) model of turbulent flow based on the Reynolds Stress turbulent closure scheme was developed, validated, and used to calculate velocity field and the pressure drop as well as particle cut size and separation efficiency in several Stairmand-type tangential flow cyclones. The results were tested and corroborated against the experimental data reported in the literature, including careful measurements performed by Gottschalk and Bohnet (Citation1995, Citation1998) for a 225 mm tangential flow cyclone, with downflow outlet connected to a tubular extension.

Particle separation in the traditional C1 cyclone configuration was shown to be most sensitive with respect to the choice of the boundary conditions at the downflow outlet, whereas with the dust outlet connected to a bin (C3 configuration) this condition has a much weaker effect on the fractional efficiency. Solutions for the C1 and C2 configurations, both combined with the blocked downflow outlet boundary condition yielded the cyclone's pressure drop in agreement with the Gottschalk and Bohnet's data. However, C2 configuration which contained a downcomer tubular extension was found preferable for correlating the measured fractional efficiency.

Acknowledgments

This research was supported by the Technion-V.P.R. Fund.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.