215
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Effect of SiC Nanoparticles Content and Mg Addition on the Characteristics of Al/SiC Composite Powders Produced via In Situ Powder Metallurgy Method

&
Pages 234-240 | Published online: 11 Apr 2013
 

Abstract

In the present study, the effect of the nanosized SiC particles loading and Mg addition on the characteristics of Al/SiC composite powders produced via a relatively new method called “in situ powder metallurgy” (IPM) was investigated. Specified amounts of SiC particles (within a size range of 250 to 600 µm) together with SiC nanoparticles (average size of 60 nm) were preheated and added to aluminum melt. This mixture was stirred via an impeller at a certain temperature for a predetermined time. The liquid droplets created by this process were then subsequently cooled in air and screened through 250 µm sieve to separate micron-sized SiC particles from solidified aluminium powder particles containing nanosized SiC particles. Results of SEM and TEM studies together with microhardness measurements revealed that the commercially pure (CP) Al could not embed as-received SiC particles. However, the nanosized particles were distributed uniformly in the Al-1 wt% Mg powders. The process yield and microhardness of the Al-1Mg composite powders increased with increasing the contributed amount of nanosized SiC particles.

Acknowledgments

The authors would like to acknowledge the financial support of the Iranian Nanotechnology Initiative (INI).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.