180
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Silica Nanoparticles Containing Gadolinium Complex as Potential Alternative to Anticancer Radiotherapy

, &
Pages 331-338 | Published online: 29 Jul 2015
 

Abstract

Today, cancer represents one of the main causes of death worldwide, making it a formidable challenge for all scientific areas that seek new therapeutic approaches for its cure. As a therapeutic approach, radiotherapy, widely used in treating various types of tumors, acts by not discriminating healthy cells from tumor cells. Seeking to minimize these effects, nanostructured carriers of radioisotopes have been studied with the aim of improving the specificity of action of ionizing radiation, delivering and retaining adequate amounts of radioactive isotopes within tumor cells, leading them to death. In the present work, silica nanoparticles were prepared in order to evaluate their capacity to act as a nanocarrier of the 159Gd-DTPA-BMA radioactive complex, which can selectively deliver high radiation doses to tumors. Furthermore, this formulation seeks to prevent nontarget tissues from receiving excessive amounts of radiation, acting as a new potential alternative to conventional radiotherapy, in which a large dose of radiation is delivered to nontarget tissues, causing harm to healthy surrounding tissues.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.