110
Views
3
CrossRef citations to date
0
Altmetric
ARTICLES

The effect of oscillating flow on a horizontal dilute-phase pneumatic conveying

, , &
Pages 699-706 | Published online: 25 Jan 2016
 

ABSTRACT

A horizontal dilute-phase pneumatic conveying system using vertically oscillating soft fins at the inlet of the gas–particle mixture was studied to reduce the power consumption and conveying velocity in the conveying process. The effect of different fin lengths on horizontal pneumatic conveying was studied in terms of the pressure drop, conveying velocity, power consumption, particle velocity, and intensity of particle fluctuation velocity for the case of a low solid mass flow rate. The conveying pipeline consisted of a horizontal smooth acrylic tube with an inner diameter of 80 mm and a length of approximately 5 m. Two types of polyethylene particles with diameters of 2.3 and 3.3 mm were used as conveying materials. The superficial air velocity was varied from 10 to 17 m/s, and the solid mass flow rates were 0.25 and 0.20 kg/s. Compared with conventional pneumatic conveying, the pressure drop, MPD (minimum pressure drop), critical velocities, and power consumption can be reduced by using soft fins in a lower air velocity range, and the efficiency of fins becomes more evident when increasing the length of fins or touching particles stream by the long fins. The maximum reduction rates of the MPD velocity and power consumption when using soft fins are approximately 15% and 26%, respectively. The magnitude of the vertical particle velocity for different lengths of fins is clearly lower than that of the vertical particle velocity for a non-fin conveying system near the bottom of the pipeline, indicating that the particles are easily suspended. The intensities of particle fluctuation velocity of using fins are larger than that of non-fin. The high particle fluctuation energy implies that particles are easily suspended and are easily conveyed and accelerated.

Acknowledgment

The experiments were conducted at Professor A. Rinoshika’s laboratory at Yamagata University, Japan.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.