154
Views
19
CrossRef citations to date
0
Altmetric
Articles

Effect of a nanoparticle-filled lubricant in turning of AISI 316L stainless steel (SS)

, &
Pages 201-208 | Published online: 14 Apr 2016
 

ABSTRACT

Release of heat and generation of friction associated with machining operation ever posture a problem which not only reduce the tool life but also impair the quality of the product. Nano cutting fluids play a significant role in machining operations and impact tool life and quality of work. In the present work, tool flank wear is analyzed during turning AISI 316L Stainless steel (SS) under a nano cutting environment. Experiments are conducted by turning of AISI 316L SS under wet machining with and without multiwalled carbon nanotube (MWCNT) inclusions in the conventional lubricant. The second order quadratic models were developed to predict tool wear using response surface methodology (RSM) based D-optimal design. Machining parameters such as speed, feed rate, and depth of cut are chosen as numerical factors and the type of lubricant is considered as the categorical factor. The results show that the influence of the feed rate is more significant while machining the AISI 316L SS with a whisker reinforced ceramic insert. The addition of MWCNTs in SAE20W40 enhances the tool performance with their enhanced penetration. After turning experiment, a scanning electron microscope (SEM) with energy dispersive X-ray (EDS) was used to investigate the tool wear.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.