203
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Spark plasma sintering behaviour of commercially pure titanium micro-alloyed with Ta-Ru

, , &
Pages 890-896 | Published online: 15 May 2018
 

ABSTRACT

Spark plasma sintering (SPS) technology was used to consolidate Ti-Ta-Ru powders and the effects of sintering parameters on the densification, corrosion and wear performance of the sintered compacts were investigated. Results showed that addition of Ta with small amount of Ru had significant influence on densification, hardness and corrosion behavior of the sintered alloy. When 9 vol.% and 1 vol.% Ru were added, the sintered density and hardness were 92.07% and 330 HV0.1 respectively. Furthermore, the addition of tantalum and ruthenium improve the corrosion and wear behaviours of Ti with a significant effect on the corrosion potential, Ecorr, and corrosion current density, Icorr, in 1 M HCl solution. The COF trend decreases upon the addition of Ta-Ru with relative improvement in wear resistance in Ti-10Ta and Ti-9Ta-1Ru as compared with commercially pure Ti. This decrease in COF is more gradual which may be attributed to the solid solution hardening offered by Ta and Ru in the matrix.

Additional information

Funding

Dr B.A. Obadele would like to thank The Claude Leon Foundation and The University of Johannesburg for their financial support. The authors would like to thank The Institute for NanoEngineering Research, Tshwane University of Technology for the use of the needful facilities to conduct the experiments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.