111
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Effect of deep cryotreated tungsten carbide electrode and SiC powder on EDM performance of AISI 304

&
Pages 981-992 | Received 28 Aug 2017, Accepted 07 Jun 2018, Published online: 01 Oct 2018
 

Abstract

Powder mixed electric discharge machining (PMEDM) is a further advancement of conventional EDM process in which electrically conductive powder is suspended in the dielectric fluid to enhance the material removal rate (MRR) along with the surface quality. Cryotreatment is introduced in this process for improving the cutting tool properties as well as tool life. In this investigation, EDM is performed for the machining of AISI 304 stainless steel using cryotreated double tempered tungsten carbide electrode when SiC powder is suspended in the kerosene dielectric. The influence of process parameters viz. pulse on time, peak current, duty cycle, gap voltage and powder concentration on tool wear rate (TWR), surface roughness (Ra), and MRR has been studied. Metallographic analysis was carried out for the machined surfaces. By the addition of powder concentration and cryotreated double tempered electrode, significant improvement in the machining efficiency has been found out. When cryotreated electrode used MRR, TWR and Ra decreased by 12%, 24% and 13.3%, respectively and when SiC powder used MRR increased by 23.2%, TWR and Ra decreased by about 25% and 14.2%, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 438.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.