61
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Assessment of metals in soil extracts and their uptake and movement within Tamarix nilotica at Lake Nasser banks, Egypt

Pages 137-154 | Received 14 Nov 2003, Accepted 13 Jan 2004, Published online: 12 May 2010
 

Abstract

This study aims to determine heavy-metal levels in soil from the banks of Lake Nasser, the ability of Tamarix nilotica to accumulate such metals from soil and hence its potential for phytoextraction. Soil and Tamarix samples were collected from the banks of four bights around Lake Nasser and analysed for Fe, Mn, Ca, Mg, Cr, Cu, Ni, Zn, Cd and Pb by atomic absorption spectrometry, whereas Na and K were measured by atomic emission spectrophotometry. Three different methods of extraction were used for the soil samples. Lead, copper and zinc were equally distributed between the exchangeable phase and Fe/Mn oxide-bound form, while other measured metals were mainly present in the Fe/Mn oxide fraction. With the exception of iron, all metals studied showed total concentrations within the geochemical background values. T. nilotica exhibited elevated concentrations of Na (36.2–48.5 mg g−1) and K (2.74–4.33 mg g−1) in stems, and relatively high concentrations of Pb, Cd and Co (0.39–1.03 µg g−1, 0.24–1.3 µg g−1 and 1.94–5.3 µg g−1, respectively) are found in plant leaves. Bioaccumulation factors of Na and K (9.3 and 12.63, respectively) were high in T. nilotica stems. While the bioaccumulation of Pb, Cd, Co and Ni (2870.1, 2035.4, 10.5 and 5313.2, respectively) was high in plant leaves, Fe, Mn, Ca and Mg were accumulated relatively equally in plant stems and leaves. T. nilotica was found to secrete high amounts of Na, Ca and K, in addition to small amounts of all accumulated metals except Cd and Cu. These secreted metals appeared as salt crystals (67.5% Na; 25.8% Ca; 5% Mg; 1.5% K and 0.16% trace and minor elements) on the plant surface. The concentrations of all the metals studied in T. nilotica were higher than in the salt crystals. Statistical analysis of the database suggests bioaccumulation of these metals from soil to T. nilotica. This reflects the importance of using T. nilotica as a model in the phytoremediation process as an established environmental clean-up technology.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 730.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.