247
Views
38
CrossRef citations to date
0
Altmetric
Miscellany

Geochemical forms of trace metals in mangrove sediments—Red Sea (Egypt)

Pages 23-36 | Received 01 Mar 2004, Accepted 05 Oct 2004, Published online: 22 Aug 2006
 

Abstract

Seven sediment samples from mangrove sediments of the Red Sea were taken in order to evaluate the possible contamination of the sediments by trace metals (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), lead (Pb) and cadmium (Cd)). Sequential extraction techniques were performed to study the different geochemical forms of these metals. X-ray diffraction analysis has been performed to correlate the mineralogical composition with the geochemical forms of the studied elements. The results of Fe and Mn contents indicate that they are in large part from lithogenous origin. The elevated concentrations are associated with the residual form ranged from 70 to 93% for Fe and 46 to 70% for Mn. The percentage of Zn, Cu, Cd and Pb in the non-residual form was much greater than that of the residual fractions. This reflects the high mobility and bioavailability of these metals in mangrove sediments of the Red Sea. X-ray diffraction analysis revealed the presence of silicate components including quartz, feldspars and clay minerals in some locality. Non-silicate components recorded in the study area as calcite as well as, Mg-calcite. Quantitatively both components i.e. silicate and carbonate varied according to their source material.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 730.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.