49
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Ortho-quinone-enhanced ascorbate oxidation. Combined roles of lipid charge and the magnesium cation

&
Pages 327-340 | Received 07 Mar 2007, Accepted 29 May 2007, Published online: 01 Apr 2008
 

Abstract

Quinones are widely distributed compounds in nature. Of these, ortho-quinones are found to be involved in the pathogenic mechanism of Parkinson's disease, in oxidative deaminations to free-radical redox reactions, and as intermediates in the pathways implicated in the carcinogenicity of 2,3- and 3,4-catechol estrogens. Addition of MgCl2 to solutions of the hydrophobic ortho-quinones, 1,10-phenanthroquinone (PHQ) and beta-lapachone (LQ) enhances ascorbate oxidation in the absence or presence of large unilamellar vesicles (LUVs) of the neutral lipid dimyristoylphosphatidylcholine (DMPC), although initial rates of ascorbate oxidation are smaller in the presence of lipid as compared to its absence. Addition of this salt to solutions of the para-quinone 1,4-naphthoquinone (NQ) did not affect the ascorbate rate of oxidation in the absence or presence of DMPC. Addition of MgCl2 to semiquinone solutions of PHQ or LQ in the presence or absence of DMPC increases semiquinone stability, as detected from the semiquinone disproportionation equilibrium displacement to semiquinone formation. Furthermore, MgCl2 increases the partition of the ortho-semiquinones into the aqueous phase, although no such effect is observed for the semiquinone of NQ. For all the quinones under study, smaller rates of ascorbate oxidation and of semiquinone equilibrium concentration occur in the presence of negatively charged LUVs composed of an equimolar mixture of DMPC and dimyristoylphosphatidic acid DMPA. Ascorbate oxidation rate enhancements correlate with an increase in semiquinone concentration with addition of MgCl2, in the absence or presence of neutral lipid. This observation favors the proposition that ascorbate oxidation rate increases are caused by semiquinone thermodynamic stabilization. Thus, the ascorbate oxidation rate enhancement by MgCl2 in solutions containing hydrophobic ortho-quinones is still possible in systems with hydrophobic environments analogous to that of DMPC.

Acknowledgements

The authors are grateful for grants No. SO6-GM008216, and P20 RR-016470 from NIH (USA) for financial support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.