96
Views
3
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Optimization of electrochemical process for phenanthrene removal from aqueous medium by Taguchi

Pages 772-782 | Received 11 Dec 2016, Accepted 21 Jan 2017, Published online: 17 Mar 2017
 

ABSTRACT

Discharge of refinery effluents containing phenanthrene (Phe) may exert carcinogenic effects on aquatic organisms. The aim of the current investigation was to investigate electrochemical removal of Phe from urban drinking water using a batch reactor. Phe removal efficiency was examined under different operating conditions including current density (1–8 mA/cm2), electrode composition materials such as aluminum (Al), copper (Cu), iron (Fe), steel (AS), or zinc (Zn), pH (4–10), and duration (20–60 min). Phe concentration was determined utilizing standard techniques. Steel–Steel (AS–AS) as anode–cathode electrodes resulted in the least Phe removal (not detected), while Zn–Cu anode–cathode electrodes produced the highest Phe removal (100%) under similar experimental conditions. The increase in current density from 1 to 8 mA/cm2 at optimum electrode and pH enhanced Phe removal from 56% to 100%. The rise in duration from 20 to 60 min at optimum electrode and pH increased Phe removal from 32% to 100%. These findings indicated that Phe removal efficiency was elevated with increasing current density, electrolysis time, and pH. Batch experiments indicated that the electrochemical reactor might be effective in removing Phe from drinking water.

Acknowledgments

The author would like to thank the Department Environmental Health of Islamic Azad University, Tehran Medical Sciences Branch and Water Purification Research Centre, Tehran Medical Sciences Branch, Islamic Azad University for financial and instrumental supports.

Disclosure statement

Water treatment filed is the most important interest's author.

Additional information

Funding

Department Environmental Health of Islamic Azad University, Tehran Medical Sciences Branch and Water Purification Research Centre, Tehran Medical Sciences Branch, Islamic Azad University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.