247
Views
21
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

Physicochemical characterization of sediments from Tajan river basin in the northern Iran

ORCID Icon &
Pages 540-549 | Received 27 Nov 2017, Accepted 23 Mar 2018, Published online: 01 Feb 2019
 

Abstract

Continuous monitoring of water quality of freshwater bodies may prevent outbreak of diseases and occurrence of hazards through employment of effective protection measures. The aim of the current investigation was to determine occurrence of water and sediment pollution in Tajan River North Iran which ultimately may be a threat to recreational beaches of Caspian Sea. Water samples were analyzed for various physicochemical parameters including pH, electrical conductivity (EC), total dissolved solids (TDS), bicarbonates, sulfates, cations, chlorides and heavy metals. The concentrations of zinc (Zn), cadmium (Cd), chromium (Cr) and lead (Pb) were determined using atomic absorption spectroscopy. Similarly, sediment samples were assessed for physicochemical characteristics including pH, EC, saturation percentage, organic matter, organic carbon, texture and cations. Overall, pH, EC, organic matter, and cation values were within acceptable limits according to USEPA water quality guidelines. However, phosphorus (P) concentration up to 5.6 mg/L was considered as “unsafe” which might result in undesirable eutrophication and increased accumulation of sediment organic content leading to excessive growth of algal species in riverine ecosystem. Heavy metal concentrations of Cd (0.08 ppm) and Pb (3 ppm) were above USEPA threshold limits which may consequently affect sustainability of Tajan River. The unacceptable levels of Cd, Pb and P may produce eutrophication of Caspian Sea coasts and damage the ecosystem.

Acknowledgments

The authors greatly acknowledge Tavakkol laboratory staff (Sari City of Iran) that carried out metal analyses for this study.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.