195
Views
1
CrossRef citations to date
0
Altmetric
Eco/Toxicology

Mercury distribution, speciation and potential ecological risk assessment in sediments from Lake Taihu, China

, &
Pages 425-439 | Received 21 Jul 2018, Accepted 29 Aug 2018, Published online: 17 Oct 2018
 

Abstract

Twenty-one surface sediments collected from seven surroundings areas of Lake Taihu in two different years were analyzed for total mercury (THg) concentrations, physicochemical characteristics and speciation using a sequential extraction method to assess spatial distribution, sources, and potential ecological risk. Surface sediments from Lake Taihu contained elevated levels of Hg in two sampling years with THg levels ranging from 77 to 346 ng/g (mean 145 ng/g) in October 2010 and ranging from 122 to 573 ng/g (mean 266 ng/g) in November 2012, respectively. The mean THg concentrations in all studied surface sediments exhibited an increasing trend over time. The oxidizable fraction (F3) and residual fraction (F4) were the predominant Hg species in sediments, while more mobile Hg phases of acid-soluble fraction (F1) and reducible fraction (F2) made up less than 0.5% THg. Significant relationships were found between total organic carbon (TOC) and THg and geochemical speciation indicating an important role for organic matter in affecting distribution, mobility, and bioavailability of Hg in sediments. As evidenced by Hakanson’s potential risk index the total ecological risk of Hg was low in the entire Lake Taihu in 2010 but considered moderate in Zhushan Bay, West Coast, and Meiliang Bay in 2012. These findings provide conservation managers with information needed to more effectively regulate the environment of Lake Taihu.

Disclosure statement

There are no potential conflicts of interest reported by the authors.

Additional information

Funding

The authors are grateful for financial support from the National Science Funds for Creative Research Groups of China (No.51421006), the National Key Plan for Research and Development of China (2016YFC0502203).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.