395
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Sustainable Production of Levulinic Acid from the Cellulosic Fraction of Pinus Pinaster Wood: Operation in Aqueous Media Under Microwave Irradiation

, , , &
Pages 315-324 | Published online: 21 May 2015
 

Abstract

The fractionation of the structural components of lignocellulosic biomass (cellulose, hemicelluloses, and lignin) and the separate utilization of the resulting fractions for specific purposes, according to the philosophy of biorefineries, enables the development of sustainable processes for biomass utilization. In this work, Pinus pinaster wood was subjected to aqueous processing to remove water-soluble extractives and hemicelluloses, and the resulting solid was subjected to pulping with HCl-catalyzed acetic acid solutions (Acetosolv method). The pulp was employed as a substrate for levulinic acid manufacture by reaction in acidic media under microwave irradiation. The effects of the major operational variables (temperature, reaction time, and acid concentration) on the levulinic acid yield were established by statistical modeling of experimental data. Operating under the best reaction conditions (at 191.2°C for 18.9 min in aqueous media containing 1.10% HCl), the levulinic acid yield accounted for 56.4% of the stoichiometric value.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 919.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.