506
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Production of Well-Controlled Laminar Aerosol Jets and Their Application for Studying Aerosol Combustion Processes

Pages 953-962 | Published online: 30 Nov 2010
 

Generation of steady-state solid aerosol jets with controllable parameters is often necessary in experimental studies and industrial processes. Most of the current approaches use a fluidized bed to produce an aerosol flow and always introduce initial turbulence into the jet. Toproduce a laminar aerosol jet, flow straighteners and long tubes are used that make the design cumbersome and inflexible. In addition, in a fluidized bed-type system, the aerosol number density and gas flow rate are inherently interdependent. In a new apparatus described in this paper, metal aerosol is produced using an electrostatic recharging of particles in a DC electric field of a parallel plate capacitor, a so-called electrostatic particulate method. The powder is aerosolized within the capacitor without using any gas flows and only a small velocity, a laminar gas jet is used to carry the aerosol away from the chamber through a small nozzle made in the top plate of the capacitor. It is shown that the aerosol number density is controlled by an electric field, independently of the gas flow rate. The usefulness and flexibility of the new technique for the aerosol combustion studies is demonstrated. Preliminary results on characterization of the produced small-scale, laminar, premixed, lifted aluminum-air flames are reported. The flame propagation velocities are measured and compared to the earlier results; overall flame dimensions and radiation profiles are determined. Individual particle flame zones are visualized in the aluminum-air aerosol flame for the first time.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.