242
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development and initial testing of an active low-power, ferroelectric film-based bioaerosol sampler

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1132-1145 | Received 11 May 2022, Accepted 15 Sep 2022, Published online: 10 Oct 2022
 

Abstract

This article introduces REAS (Rutgers Electrostatic Active Sampler), a new active bioaerosol sampler using permanently polarized ferroelectric film (e.g., PVDF) to capture charge-carrying bioaerosol particles. While REAS operates on an electrostatic collection principle, due to its unique materials and design, it does not require external power to charge incoming particles or to create an electrostatic collection field. The sampler consists of a polarized film wound in a spiral configuration with oppositely polarized film sides positioned 2.25 mm apart. The film and its holder are inserted into a 3D-printed housing cylinder to connect to a pump. The device has an open channel design, creating virtually no pressure drop, which allows for longer sampling times on the same battery charge compared to filter samplers. When REAS was tested in different field environments, the physical collection efficiency ranged from 19 ± 2% in a laboratory environment at 1 L/min to 41 ± 0.1% in residence at 0.1 L/min. When REAS was used to capture culturable bacteria and fungi over a 24-hr period, the concentrations determined by REAS were not different from those determined by an Institute of Medicine sampler (IOM, SKC, Inc.). The concentrations determined by both samplers were lower than those measured by a SAS Super 180 Sampler (SAS, Bioscience International), except for outdoor fungi. However, the SAS was used as a grab sampler to avoid overloading or desiccating the plates, while both REAS and IOM continuously sampled for 24 hrs. Further studies will explore improvements to the REAS sample elution protocols.

Copyright © 2022 American Association for Aerosol Research

GRAPHICAL ABSTRACT

Acknowledgments

The authors acknowledge the support of Dr. N. T. Myers and Ms. A. Lazofsky for their reviews and suggestions.

Additional information

Funding

Manibusan was funded by the NIEHS training grant number T32 ES019854 (PI: C. Weisel).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 165.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.