598
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

On the Settling Velocity in a Nonstationary Atmosphere

&
Pages 247-256 | Received 26 Apr 1990, Accepted 06 Aug 1990, Published online: 08 Jun 2007
 

Abstract

A general drag coefficient has been used in the equation of motion for solid spherical particles. The time constants, stopping times, and settling velocities in a still atmosphere are computed for a wide range of Reynolds numbers. The settling times are compared with the times calculated when a particle is falling in a fluctuating atmosphere. It is found that such particles will get significantly longer settling times owing to an enhancement in the drag coefficient caused by an increase of the relative velocity between the particle and the fluid. Surprisingly, this enhancement is present for a horizontal wind field due to a coupling between particle motion in different directions, but it is also present for a vertical field. The effect is most pronounced in the intermediate Reynolds number region, slightly above the Stokes range, where the increase in settling time can be more than 10% for certain fluctuation frequencies and amplitudes. This indicates that such particles must be carefully treated when they are falling in a nonstationary medium

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.