122
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Aerosol Bolus Transport Through a Hollow Airway Cast by Steady Flow in Different Gases

&
Pages 27-39 | Received 20 Jul 1992, Accepted 13 Nov 1992, Published online: 11 Jun 2007
 

Abstract

Transport of aerosol through the airways of a hollow cast of a canine tracheobronchial tree was measured for steady flow in different gas mixtures. A small bolus of 0.5-μm aerosol particles was inserted as a tracer of convective motion in the flow at the entrance of the trachea, and particles were collected and counted as they arrived at a flow-balanced sampling bag at a peripheral segment of the cast. Transport was fastest in the gas of highest kinematic viscosity (helium), and slowest in the gas of lowest kinematic viscosity (sulfur hexafluoride). This is consistent with the lubrication theory that describes an axial core in the divergent flow field of the bronchial tree. The finer core in helium transports the particles at a greater velocity to distal airways. Transport of gases through the in vivo respiratory tract should also be influenced by these fluid mechanics of convection resembling Poiseuille flow that is substantially modified according to lubrication theory. As predicted by some other investigators, gas and aerosol particles penetrate much deeper into the lungs than the volumetric depth of inhalation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.