83
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Poisson Voronoï tiling for finding clusters in spatial point patterns

, &
Pages 239-248 | Received 11 Jul 2005, Published online: 16 Aug 2006
 

Abstract

In forest stand mapping a delineation of spatial compact clusters of trees with similar attributes can improve inventory accuracy and growth and yield predictions. To this end a Poisson Voronoï tiling (PVT) for identifying and delineating clusters (features) in spatial point patterns is proposed. PVT operates on the assumption that the point density in clusters is higher than that outside the clusters. A spatial domain of an observed point pattern is tessellated repeatedly into k (random) Poisson Voronoï cells. An average EM-based likelihood of feature based on observed cell point densities is computed for each point and location of interest. Points and locations of interest are then classified by maximizing a classification likelihood. PVT avoids the need to specify the number of clusters. In a direct comparison with a non-parametric maximum profile likelihood procedure, and a smoothed version of the same, PVT performed well on two artificial point patterns with known feature domain and points, and on two spatial point patterns of first returns from a forest lidar survey on Vancouver Island, British Columbia, Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 133.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.