232
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Assessment of bias due to random measurement errors in stem volume growth estimation by the Swedish National Forest Inventory

, &
Pages 174-183 | Received 12 Mar 2012, Accepted 11 Sep 2012, Published online: 23 Oct 2012
 

Abstract

We evaluated the performance of two methods for estimating stem volume increment at individual tree level with respect to bias due to random measurement errors. Here, growth is either predicted as the difference between two consecutive volume estimates where single-tree volume functions are applied to data from repeated measurements or by a regression model that is applied to data from a single survey and includes radial increment. In national forest inventories (NFIs), the first method is typically used for permanent plots, the second for temporary plots. The Swedish NFI combines estimates from both plot types to assess growth at national and regional scales and it is, therefore, important that the two methods provide similar results. The accuracy of these estimates is affected by random measurement errors in the independent variables, which may lead to systematic errors in predicted variables due to model non-linearity. Using Taylor series expansion and empirical data from the Swedish NFI we compared the expected bias in stem volume growth estimates for different diameter classes of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). Our results indicate that both methods are fairly insensitive to random measurement errors of the size that occur in the Swedish NFI. The empirical comparison between the two methods showed greater differences for large diameter trees of both pine and spruce. A likely explanation is that the regressions are uncertain because few large trees were available for developing the models.

Acknowledgements

We thank Bertil Westerlund from the Swedish National Forest Inventory for excellent help in providing NFI data and valuable discussions along the way. The study was supported by FORMAS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 133.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.