146
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Copper and zinc dynamics in foliar litter during decomposition from gap center to closed canopy in an alpine forest

, , , , &
Pages 355-367 | Received 05 Sep 2014, Accepted 27 Jul 2015, Published online: 12 Sep 2015
 

ABSTRACT

Forest gap in alpine forests may redistribute the hydrothermal conditions in winter and growing season, which may affect the releases of copper and zinc in foliar litter during decomposition. However, the details of this process are largely unknown. Foliar litters of willow (Salix paraplesia), larch (Larix mastersiana), fir (Abies faxoniana), azalea (Rhododendron lapponicum), birch (Betula albosinensis) and cypress (Sabina saltuaria) were selected in an alpine forest of eastern Tibetan Plateau. The litterbags were placed on the forest floor from gap center, canopy gap edge and expanded gap edge to closed canopy. Zinc and copper contents were studied as litter decomposition proceeded. After one year of decomposition, zinc accumulated in all foliar litters regardless of gap positions, but copper accumulated in the litters of fir, azalea and cypress. Separately, copper was released from all foliar litters in winter, whereas zinc in litters of larch, azalea, birch and cypress was released in winter. Moreover, both copper and zinc accumulated during the growing season regardless of litter species. Nevertheless, higher accumulation rates were observed under closed canopy compared with other gap positions. These results suggest that forest gap slows the releases of copper and zinc in foliar litter during forest regeneration in these cold biomes.

Acknowledgements

We are grateful to the fundings mentioned below for providing financial support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [number 31270498], [31170423]; the National Key Technologies R and D Program of China [number 2011BAC09B05]; and the Post-doctoral Foundation of China [number 2012T50782].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 133.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.