459
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Assessment of 3D-TOF-MRA at 3.0 Tesla in the Characterization of the Angioarchitecture of Cerebral Arteriovenous Malformations: A Preliminary Study

, , , , , , , & show all
Pages 678-686 | Accepted 01 Mar 2007, Published online: 04 Aug 2009
 

Abstract

Background: The characterization of brain arteriovenous malformation (AVM) angioarchitecture remains rewarding in planning and predicting therapy. The increased signal-to-noise ratio at higher field strength has been found advantageous in vascular brain pathologies.

Purpose: To evaluate whether 3.0T time-of-flight (TOF) magnetic resonance angiography (MRA) is superior to 1.5T TOF-MRA for the characterization of cerebral AVMs.

Material and Methods: Fifteen patients with AVM underwent TOF-MRA at 3.0T and 1.5T and catheter angiography (DSA), which was used as the gold standard. Blinded readers scored image quality on a four-point scale, nidus size, and number of feeding arteries and draining veins.

Results: Image quality of TOF-MRA at 3.0T was superior to 1.5T but still inferior to DSA. Evaluation of nidus size was equally good at 3.0T and 1.5T for all AVMs. In small AVMs, however, there was a tendency of size overestimation at 3.0T. MRA at 3.0T had increased detection rates for feeding arteries (+21%) and superficial (+13%) and deep draining veins (+33%) over 1.5T MRA.

Conclusion: 3.0T TOF-MRA offers superior characterization of AVM angioarchitecture compared with 1.5T TOF-MRA. The image quality of MRA at both 3.0 and 1.5T is still far from equal to DSA, which remains the gold standard for characterization of AVM.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.