264
Views
0
CrossRef citations to date
0
Altmetric
Musculoskeletal Radiology

Effects of Methylprednisolone on Bone Mineral Density and Microarchitecture of Trabecular Bones in Rats with Administration Time and Assessed by Micro-Computed Tomography

, , , , , , , , & show all
Pages 93-100 | Published online: 09 Jul 2009
 

Abstract

Background: Little research exists on the dynamic effects of glucocorticoids on bone mineral density (BMD) and microarchitecture of trabecular bones of rats assessed by micro-computed tomography (micro-CT).

Purpose: To investigate time-related changes in the BMD and microarchitecture of trabeculae in rats exposed to glucocorticoid.

Material and Methods: Female Sprague-Dawley rats were recruited into a baseline group, glucocorticoid-treated groups, or control groups. Glucocorticoid-treated rats were given daily subcutaneous injections of methylprednisolone at a dosage of 3.5 mg/kg for 1 or 9 weeks. A high-resolution micro-CT was used to identify the densitometric and microarchitectural properties of trabeculae in both the proximal metaphysis of tibiae and the sixth lumbar vertebrae (L6).

Results: Compared with baseline rats, volumetric BMD, tissue BMD, bone volume fraction, trabecular number, and degree of anisotropy of trabeculae from tibiae or L6 increased in control rats and glucocorticoid-treated rats with time; however, changes in the latter group were smaller. Compared with control rats at each time point, a decrease occurred in volumetric BMD, tissue BMD, bone volume fraction, trabecular number, degree of anisotropy, and trabecular connectivity density in trabecular bones from tibiae or L6 in glucocorticoid-treated rats. The decrease was greater in week 9 compared to week 1. Contrarily, an increase was noted in trabecular thickness, trabecular separation, and structure model index in glucocorticoid-treated rats. A time-related analysis within glucocorticoid-treated groups in both skeletal regions showed a decline in bone volume fraction, trabecular connectivity density, trabecular number, and degree of anisotropy with time, but trabecular thickness and trabecular separation were elevated.

Conclusion: Methylprednisolone can inhibit bone mineralization and bone mass gain with growth in rats. It can also deteriorate microarchitecture of trabeculae in a time-dependent or an accumulative dose-dependent manner. Further, the remaining trabeculae appear to thicken in order to adapt to altered stress.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.