476
Views
33
CrossRef citations to date
0
Altmetric
Original

The Fras1/Frem Family of Extracellular Matrix Proteins: Structure, Function, and Association with Fraser Syndrome and the Mouse bleb Phenotype

, &
Pages 277-282 | Published online: 06 Aug 2009
 

Abstract

Fras1 and the structurally related proteins Frem1, Frem2, and Frem3, comprise a novel family of extracellular matrix proteins, which localize in a similar fashion underneath the lamina densa of epithelial basement membranes. They are involved in the structural adhesion of the skin epithelium to its underlying mesenchyme. Deficiency in the individual murine Fras1/Frem genes gives rise to the bleb phenotype, which is equivalent to the human hereditary disorder Fraser syndrome, characterized by cryptophthalmos (hidden eyes), embryonic skin blistering, renal agenesis, and syndactyly. Recent studies revealed a functional cooperation between the Fras1/Frem gene products, in which Fras1, Frem1 and Frem2 are simultaneously stabilized at the lowermost region of the basement membrane by forming a macromolecular ternary complex. Loss of any of these proteins results in the collapse of the protein assembly, thus providing a molecular explanation for the highly similar phenotypic defects displayed by the respective mutant mice. Here, we summarize the current knowledge regarding the structure, function, and interplay between the proteins of the Fras1/Frem family and further propose a possible scenario for the evolution of the corresponding genes.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.