448
Views
7
CrossRef citations to date
0
Altmetric
Articles

Fine-tuning the ubiquitin-proteasome system to treat pulmonary fibrosis

, &
Pages 50-61 | Received 31 May 2018, Accepted 23 Sep 2018, Published online: 22 Oct 2018
 

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an extremely aggressive lung disease that develops almost exclusively in older individuals, carries a very poor prognosis, and lacks any truly effective therapies. The current conceptual model is that IPF develops because of an age-related decline in the ability of the lung epithelium to regenerate after injury, largely due to death or senescence of epithelial progenitor cells in the distal airways. This loss of regenerative capacity is thought to initiate a chronic and ineffective wound-healing response, characterized by persistent, low-grade lung inflammation and sustained production of collagen and other extracellular matrix materials. Despite recent advances in our understanding of IPF pathobiology, there remains a pressing need to further delineate underlying mechanisms to develop more effective therapies for this disease. In this review, we build the case that many of the manifestations of IPF result from a failure of cells to effectively manage their proteome. We propose that epithelial progenitor cells, as well as immune cells and fibroblasts, become functionally impaired, at least in part, because of an accumulation or a loss in the expression of various crucial proteins. Further, we propose that central to this defect is the dysregulation of the ubiquitin-proteasome system (UPS), which is the major protein-degradation system in eukaryotic cells. Lastly, borrowing concepts from other fields, we discuss how targeting the UPS system could be employed as a novel treatment for IPF and perhaps for other fibrotic lung diseases as well.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Grants National Institutes of Health [R01HL131784] (R.S.) and [R01HL136833] (F.R.).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.