187
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Ascorbic acid mitigates the deleterious effects of nicotine on tendon stem cells

, &
Pages 183-193 | Received 26 Jan 2019, Accepted 28 Aug 2019, Published online: 05 Sep 2019
 

ABSTRACT

Purpose: Nicotine causes tendon degeneration, whereas ascorbic acid imparts beneficial effects on tendon cells. Tendon stem cells (TSCs) play a vital role in maintaining tissue integrity and promoting restoration of structure and function after tendon injury. In the present study, cell culture experiments were performed to determine the effects of nicotine on TSCs and whether ascorbic acid supplementation could antagonize the action of high concentration nicotine.

Methods: After treatment with nicotine and ascorbic acid, TSC proliferation, migration, stemness, apoptosis, and differentiation were analyzed.

Results: TSC proliferation and expression of stem cell markers were significantly impaired by a high concentration of nicotine (1000 ng/mL), but a lower concentration (100 ng/mL) induced proliferative effects in TSCs. Moreover, the highest concentration of nicotine tested (1000 ng/mL) significantly inhibited the migratory ability of TSCs, while relatively high concentrations (100 and 1000 ng/mL) significantly (p < 0.05) up-regulated non-tenocyte genes. When ascorbic acid was added, the inhibitory effects of nicotine on the proliferation, migration, and stemness of TSCs were reversed. In addition, flow cytometry analysis showed that these nicotine concentrations could induce cell apoptosis, while the addition of ascorbic acid inhibited apoptosis.

Conclusion: Addition of ascorbic acid partially reversed the inhibitory effect of a high concentration of nicotine. These findings indicate that while nicotine impairs the biological characteristics of TSCs, ascorbic acid can mitigate these deleterious effects and, therefore, may be useful for decreasing nicotine-induced tendon degeneration.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [81972139].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.