322
Views
3
CrossRef citations to date
0
Altmetric
Articles

RHOA inhibits chondrogenic differentiation of mesenchymal stem cells in adolescent idiopathic scoliosis

, , , , , , , & show all
Pages 475-484 | Received 07 Jun 2021, Accepted 01 Dec 2021, Published online: 12 Jan 2022
 

ABSTRACT

Purpose

The etiology of adolescent idiopathic scoliosis (AIS) remains unclear. The chondrogenic differentiation of mesenchymal stem cells (MSCs) is important in AIS, and the Ras homolog gene family member A (RHOA) is associated with chondrogenesis. The purpose of this study was to explore the effect of RHOA on the chondrogenic differentiation of MSCs in AIS.

Methods

We isolated MSCs from patients with AIS (AIS MSCs) and individuals without AIS (control MSCs). The inhibitor Y27632 was used to inhibit the function of RHOA/ROCK signaling, and plasmid-based overexpression and siRNA-mediated knockdown were used to manipulate RHOA expression. CCK-8 was used to detect cell viability. The phosphorylation levels of LIMK1, MLC2 and cofilin were detected by Western blotting. The mRNA expression of aggrecan, SOX9, and COL2A1 were confirmed using RT-PCR. Immunofluorescence was used to analyze F-actin and collagen II. Alcian blue staining was performed to assess the secretion of glycosaminoglycans (GAGs).

Results

We found that RHOA was significantly upregulated in AIS MSCs, and the phosphorylation levels of LIMK1, MLC2, and cofilin were increased. The mRNA expressions of aggrecan, SOX9, and COL2A1 were notably reduced in AIS MSCs. However, these effects were abolished by Y27632 treatment and RHOA knockdown in AIS MSCs. In addition, RHOA knockdown in AIS MSCs increased the content of collagen II and GAGs. RHOA overexpression in the control MSCs markedly activated the RHOA/ROCK signaling and decreased the expression of aggrecan, SOX9, and COL2A1, F-actin, and GAGs.

Conclusion

RHOA regulates the chondrogenic differentiation ability of MSCs in AIS via the RHOA/ROCK signaling pathway and this regulation may involve SOX9.

Acknowledgments

None.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by Shanghai Sailing Program [No.: 19YF1447100] and Special Project for Clinical Research of Health Industry of Shanghai Municipal Health Commission [No.: 201840242].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.