390
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Late Holocene palynology and palaeovegetation of tephra‐bearing mires at Papamoa and Waihi Beach, western Bay of Plenty, North Island, New Zealand

, &
Pages 283-300 | Received 01 Aug 1994, Accepted 09 Jan 1995, Published online: 30 Mar 2010
 

The vegetation history of two mires associated with Holocene dunes near the western Bay of Plenty coast, North Island, New Zealand, is deduced from pollen analysis of two cores. Correlation of airfall tephra layers in the peats, and radiocarbon dates, indicate that the mires at Papamoa and Waihi Beach are c. 4600 and c. 2900 conventional radiocarbon years old, respectively. Tephras used to constrain the chronology of the pollen record include Rotomahana (1886 AD), Kaharoa (700 yr B.P.), Taupo (Unit Y; 1850 yr B.P.), Whakaipo (Unit V; 2700 yr B.P.), Stent (Unit Q; 4000 yr B.P.), Hinemaiaia (Unit K; 4600 yr B.P.), and reworked Whakatane (c. 4800 yr B.P.) at Papamoa, and Kaharoa and Taupo at Waihi Beach. Peat accumulation rates at Papamoa from 4600 ‐ 1850 yr B.P. range from 0.94 to 2.64 mm/yr (mean 1.37 mm/yr). At Waihi Beach, from 2900 yr B.P. ‐ present day, they range from 0.11 to 0.21 mm/yr (mean 0.20 mm/yr). Peat accumulation at both sites was slowest from 1850 to 700 yr B.P., suggesting a drier overall climate during this interval.

At both sites, the earliest organic sediments, which are underlain by marine or estuarine sands, yield pollen spectra indicating salt marsh or estuarine environments. Coastal vegetation communities declined at both sites, as sea level gradually fell or the coast prograded, and were eventually superseded by a low moor bog at Papamoa, and a mesotrophic swamp forest at Waihi Beach. These differences, and the marked variation in peat accumulation rates, probably reflect local hydrology and are unlikely to have been climatically controlled. The main regional vegetation during this period was mixed northern conifer‐angiosperm forest. Kauri (Agathis australis) formed a minor component of these forests, but populations of this tree have apparently not expanded during the late Holocene at these sites, which are near its present southern limit. Occasional shortlived forest disturbances are detectable in these records, in particular immediately following the deposition of Taupo Tephra. However, evidence for forest clearance during the human era is blurred by the downward dislocation of modern adventive pollen at these sites, preventing the clear differentiation of the Polynesian and European eras.

Notes

Department of Geographical Sciences, University of Plymouth, Plymouth, Devon PL4 8AA, England

Department of Earth Sciences and Geochronology Research Unit, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Present address: C. L. Associates, Prospect House, Prospect Road, Mucklow Hill, Halesowen, Birmingham B62 8DU, England

Additional information

Notes on contributors

G. N. A. Wigley

† #

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.