249
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of perturbed and constrained fuel-optimal impulsive rendezvous using a hybrid approach

, , &
Pages 959-973 | Received 31 Aug 2005, Published online: 26 Jan 2007
 

Abstract

The perturbed and constrained fuel-optimal impulsive rendezvous problem is formulated, developed, and solved. A non-linear programming model is established for the general perturbed fuel-optimal multiple-impulse time-fixed rendezvous with path constraints, and a hybrid approach is proposed as a global and efficient optimization tool. A floating-coded genetic algorithm is employed in this hybrid approach to locate an initial reference solution for sequential quadratic programming (SQP) using a simplified analytical propagator. Subsequently, SQP is used to locate the accurate solution using numerical integration of the high-fidelity trajectory dynamic equations. The hybrid approach is evaluated in three test cases: (i) Holman rendezvous and Lambert rendezvous, (ii) a three-impulse homing rendezvous with and without communication window constraints, and (iii) a four- and five-impulse non-coplanar multi-revolution rendezvous. The results show that the hybrid approach is effective and efficient in optimizing the perturbed and constrained fuel-optimal multiple-impulse rendezvous.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.