102
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

An interval full-infinite programming method to supporting environmental decision-making

, , &
Pages 709-728 | Received 26 Mar 2007, Published online: 17 Jul 2008
 

Abstract

An interval full-infinite programming (IFIP) method is developed by introducing a concept of functional intervals into an optimization framework. Since the solutions of the problem should be ‘globally’ optimal under all possible levels of the associated impact factors, the number of objectives and constraints is infinite. To solve the IFIP problem, it is converted to two interactive semi-infinite programming (SIP) submodels that can be solved by conventional SIP solution algorithms. The IFIP method is applied to a solid waste management system to illustrate its performance in supporting decision-making. Compared to conventional interval linear programming (ILP) methods, the IFIP is capable of addressing uncertainties arising from not only the imprecise information but also complex relations to external impact factors. Compared to SIP that can only handle problems containing infinite constraints, the IFIP approaches are useful for addressing inexact problems with infinite objectives and constraints.

Acknowledgements

This research was supported by the Major State Basic Research Development Program of MOST (2005CB724200 and 2006CB403307) and the Natural Science and Engineering Research Council of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.