380
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Use of multi-objective optimization for digital human posture prediction

, , , &
Pages 925-943 | Received 18 Feb 2009, Published online: 18 Sep 2009
 

Abstract

With sufficient fidelity, the use of virtual humans can save time, money, and lives through improved product design, process design, and understanding of behaviour. Optimization-based posture prediction is a unique tool, and this article presents a study that advances posture prediction with a multi-objective optimization (MOO) approach. MOO is used to both develop and combine the following human performance measures: joint displacement; musculoskeletal discomfort; and a variation on potential energy. The following MOO methods are studied in the context of human modelling: objective sum; min–max; and global criterion. Using MOO yields realistic results. Of the independent performance measures, discomfort generally provides the most accurate postures. Potential energy, however, is not a significant factor in governing human posture and should be combined with other performance measures. The three MOO methods for combining performance measures yield similar results, but the objective sum provides slightly more realistic postures.

Acknowledgements

This research was funded by the US Army TACOM project, Digital Humans and Virtual Reality for Future Combat Systems, and the Caterpillar project, Digital Human Modelling and Simulation for Safety and Serviceability.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.