620
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

A multi-objective genetic algorithm for the design of pressure swing adsorption

, &
Pages 833-854 | Published online: 03 Sep 2009
 

Abstract

Pressure Swing Adsorption (PSA) is a cyclic separation process, with advantages over other separation options for middle-scale processes. Automated tools for the design of PSA processes would be beneficial for the development of the technology, but their development is a difficult task due to the complexity of the simulation of PSA cycles and the computational effort needed to detect the performance in the cyclic steady state.

A preliminary investigation is presented of the performance of a custom multi-objective genetic algorithm (MOGA) for the optimization of a fast cycle PSA operation – the separation of air for N2 production. The simulation requires a detailed diffusion model, which involves coupled nonlinear partial differential and algebraic equations (PDAEs). The efficiency of MOGA to handle this complex problem has been assessed by comparison with direct search methods. An analysis of the effect of MOGA parameters on the performance is also presented.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.