242
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

A bilevel game theoretic approach to optimum design of flywheels

&
Pages 1337-1350 | Received 11 Feb 2011, Accepted 10 Oct 2011, Published online: 08 Feb 2012
 

Abstract

Multiobjective optimization problems arise frequently in mechanical design. One approach to solving these types of problems is to use a game theoretic formulation. This article illustrates the application of a bilevel, leader–follower model for solving an optimum design problem. In particular, the optimization problem is modelled as a Stackelberg game. The partitioning of variables between the leader and follower problem is discussed and a variable partitioning metric is introduced to compare various variable partitions. A computational procedure based on variable updating using sensitivity information is developed for exchanging information between the follower and leader problems. The proposed approach is illustrated through the design of a flywheel. The two objective functions used for the design problem include maximizing the kinetic energy stored in the flywheel while simultaneously minimizing the manufacturing cost.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.