311
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

An alternative approach to the ground motion prediction problem by a non-parametric adaptive regression method

, &
Pages 1651-1668 | Received 08 Mar 2013, Accepted 01 Oct 2013, Published online: 02 Jan 2014
 

Abstract

Ground Motion Prediction Equations (GMPEs) are empirical relationships which are used for determining the peak ground response at a particular distance from an earthquake source. They relate the peak ground responses as a function of earthquake source type, distance from the source, local site conditions where the data are recorded and finally the depth and magnitude of the earthquake. In this article, a new prediction algorithm, called Conic Multivariate Adaptive Regression Splines (CMARS), is employed on an available dataset for deriving a new GMPE. CMARS is based on a special continuous optimization technique, conic quadratic programming. These convex optimization problems are very well-structured, resembling linear programs and, hence, permitting the use of interior point methods. The CMARS method is performed on the strong ground motion database of Turkey. Results are compared with three other GMPEs. CMARS is found to be effective for ground motion prediction purposes.

Acknowledgements

Fatma Yerlikaya-Özkurt is supported by the TUBITAK Domestic Doctoral Scholarship Program. The authors would like to thank Dr Zeynep Gülerce for the processed version of the ground motion dataset.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.