373
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

Sequential sampling designs based on space reduction

, &
Pages 867-884 | Received 22 Jan 2013, Accepted 15 May 2014, Published online: 26 Jun 2014
 

Abstract

In the field of engineering design and optimization, metamodels are widely used to replace expensive simulation models in order to reduce computing costs. To improve the accuracy of metamodels effectively and efficiently, sequential sampling designs have been developed. In this article, a sequential sampling design using the Monte Carlo method and space reduction strategy (MCSR) is implemented and discussed in detail. The space reduction strategy not only maintains good sampling properties but also improves the efficiency of the sampling process. Furthermore, a local boundary search (LBS) algorithm is proposed to efficiently improve the performance of MCSR, which is called LBS-MCSR. Comparative results with several sequential sampling approaches from low to high dimensions indicate that the space reduction strategy generates samples with better sampling properties (and thus better metamodel accuracy) in less computing time.

Funding

The authors appreciate the financial support from the PhD Programs Foundation of Liaoning Province [20131019], the Fundamental Research Funds for the Central Universities [DUT14QY36], the National Basic Research Program of China [2009CB724303] and the National Natural Science Foundation of China [51308090].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.