253
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Optimal design of a tapping-mode atomic force microscopy cantilever probe with resonance harmonics assignment

, , &
Pages 43-59 | Received 09 Dec 2014, Accepted 08 Mar 2016, Published online: 07 Jun 2016
 

ABSTRACT

In tapping-mode atomic force microscopy, the higher harmonics generated in the tapping process provide evidence for material composition imaging based on material property information (e.g. elasticity). But problems of low amplitude and rapid decay of higher harmonics restrict their sensitivity and accessibility. The probe’s characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic frequencies. In this article, a systematic structural optimization framework is demonstrated for designing a three-layer probe with specified ratios between eigenfrequencies. An original regular cantilever probe is divided into three layers, from which the cross-sectional width of the symmetrical top and bottom layers is the design variable, while the middle layer is unchanged. Optimization constraints are the integer ratios between eigenfrequencies, and the objective is to maximize the first eigenfrequency. Numerical examples with single- and multiple-frequency constraints are investigated, which enhance significantly the frequency response at specific harmonic positions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.