333
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Structural optimization with an automatic mode identification method for tracking global vibration mode

, &
Pages 2036-2054 | Received 17 Nov 2016, Accepted 25 Jan 2017, Published online: 25 Feb 2017
 

ABSTRACT

This article presents a mode identification method for structural optimization with global mode constraints to overcome the mode switching problem. In engineering design, the natural frequencies of global vibrations for a complex structure, the orders of which would not be constant in optimization loops, are usually very difficult to constrain. In this case, an incorrect constraint may lead to an unreliable design. A mode identification technique based on modal effective mass fraction is implemented to track the global modes such that the constraints will be updated subsequently and the optimizer can run correctly. A study case with comparison to traditional modal assurance criterion approaches demonstrates the advantages of this technique. An optimization framework has been developed with the new proposed mathematical model. Two numerical optimization examples, of a space truss and a simplified satellite structure, are presented to demonstrate the feasibility and applicability of this process.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The authors acknowledge the support from the National Natural Science Foundation of China [grant numbers 11102009 and 11302010].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.