143
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers

, ORCID Icon &
Pages 1364-1379 | Received 16 Nov 2016, Accepted 31 Oct 2017, Published online: 29 Nov 2017
 

ABSTRACT

In this work a new evolutionary computation technique is introduced for the construction of initial value solvers based on Runge–Kutta (RK) pairs. The derivation of RK pairs corresponds to solving a nonlinear optimization problem with a multimodal objective function in a high dimensional search space; additional difficulty stems from the fact that only solutions with accuracy at least equal to machine epsilon are acceptable. The proposed approach involves hybridizing a Differential Evolution (DE) strategy with elements from Particle Swarm Optimization (PSO) in order to produce a method for solving optimization problems with high accuracy. The resulting methodology is applied to two different problems of RK pair derivation of orders 5 and 4 and compared with standard DE techniques. Numerical experiments show that the proposed hybrid DE-PSO satisfies the strict accuracy requirements imposed by the particular problem, while outperforming its rivals.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.