296
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Multi-objective optimization of a flexible slider-crank mechanism synthesis, based on dynamic responses

, &
Pages 978-999 | Received 19 Feb 2018, Accepted 24 Jul 2018, Published online: 04 Sep 2018
 

ABSTRACT

This work deals with a multi-body system synthesis. A flexible slider crank mechanism has been investigated as an illustrative application. The main interest is focused on the mechanism design variables’ identification based on its dynamic responses. Three responses have been involved such as the slider velocity, the slider acceleration and the mid-point transversal deflection of the flexible connecting rod. Each of these responses has been embroiled separately in a mono-objective optimization. Subsequently, the multi-objective optimization subsuming these responses has been established. Two different optimization methods have been studied namely the genetic algorithm (GA) and the particle swarm optimization (PSO) technique. It has been proved that the multi-objective optimization presents more accurate results beside the mono-objective optimization. Compared to the GA, the PSO is more powerful and is able to identify the mechanism design variable with better accuracy, in spite of the affordable computational time allowed with the GA optimization.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.