646
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Response surface optimization for a nonlinearly constrained irregular experimental design space

&
Pages 2030-2048 | Received 23 Jul 2018, Accepted 06 Dec 2018, Published online: 13 Feb 2019
 

Abstract

Finding optimum conditions for process factors in an engineering optimization problem with response surface functions requires structured data collection using experimental design. When the experimental design space is constrained owing to external factors, its design space may form an asymmetrical and irregular shape and thus standard experimental design methods become ineffective. Computer-generated optimal designs, such as D-optimal designs, provide alternatives. While several iterative exchange algorithms for D-optimal designs are available for a linearly constrained irregular design space, it has not been clearly understood how D-optimal design points need to be generated when the design space is nonlinearly constrained and how response surface models are optimized. This article proposes an algorithm for generating the D-optimal design points that satisfy both feasibility and optimality conditions by using piecewise linear functions on the design space. The D-optimality-based response surface design models are proposed and optimization procedures are then analysed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,161.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.