1,688
Views
37
CrossRef citations to date
0
Altmetric
Articles

Framing students’ progression in understanding matter: a review of previous research

, &
Pages 181-208 | Published online: 04 Sep 2014
 

Abstract

This manuscript presents a systematic review of the research on how students conceptualise matter. Understanding the structure and properties of matter is an essential part of science literacy. Over the last decades the number of studies on students’ conceptions of matter published in peer-reviewed journals has increased significantly. These studies investigated how students conceptualise matter, to what extent students are able to explain everyday phenomena or how students develop an understanding of matter over time. In order to understand how students progress in their understanding of matter, what they understand easily and where they have difficulties, there is a need to identify common patterns across the available studies. The first substantial review of research on students’ conception was provided in the 1990s with the aim to organise students’ understanding of matter into four categories: students’ conceptions about (1) chemical reactions, (2) physical states and their changes, (3) atoms, molecules and particle systems and (4) conservation. The aim of this review and analysis is to identify how subsequent research on students’ conceptions of matter adds to this framework. The last comprehensive review of research on students’ understanding of matter was carried out in the early 2000s. Thus, we analysed studies on students’ conceptions of matter published within the last decade in five peer-reviewed journals of science education. Our findings suggest that research has moved from categorising students’ conceptions to analysing students’ progression in understanding matter. Based on our findings, we also identified typical pathways by which students may develop over time related to the four categories identified in previous reviews. As a conclusion, we present a model describing students’ progression in understanding matter which may contribute to the development of a K-12 learning progression of matter.

Acknowledgements

The research reported here was supported by the German Federal Ministry of Education and Research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 259.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.