119
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Diamond microelectrodes arrays for the detection of secretory cell activity

, , , , , , & show all
Pages 150-160 | Received 18 Jun 2009, Accepted 20 Sep 2009, Published online: 20 Jan 2011
 

Abstract

Diamond applications potential for biosensing devices have been highlighted by several authors, especially concerning the long-term stability of covalent functionalisations on its surface. Additionally, in electrochemistry boron doped diamond electrodes (NA ∼ 1020 cm3) show high corrosion resistance and a large hydrolysis window. These features, recognised and exploited in industrial applications, have up to now found little resonance in the life-sciences. Here we present diamond microelectrode arrays based on (1) nanocrystalline diamond (NCD) thin films and (2) single crystal diamond (SCD). NCD is necessary for large area applications like arrays, but graphitic grain boundaries may influence its behaviour. The ideal case SCD is covered here for comparison. The array design consists of four electrodes whose sensitive area is delimited by means of a patterned photoresist. Two different patterns were used to realise a layout with four independent openings (15 µm diameter) for simultaneous detection on multiple cells and a layout with one single window (25 µm diameter) intersecting all four electrodes to create a quadrupolar detector suitable for mapping the activity of single cells. Early results validated the suitability of both NCD and SCD devices: (1) cyclic-voltammetry measurements confirmed the adrenaline oxidation potential on the presented microelectrodes around 650 mV; (2) alternating applications of 1 mM adrenaline and saline rinsing solutions showed negligible electrode fouling; and (3) interfaced to single adrenal chromaffin cells, the devices clearly detected sustained sequences of quantal events (10–100 pA amplitude, 50–100 ms duration) associated to the vesicular release of adrenaline and noradrenaline during exocytosis induced by cell-depolarisation.

Acknowledgements

This research was supported by ‘Vigoni program’, Regione Piemonte and Landesstiftung Baden-Württemberg grants.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.