44
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Analysis and Fate of Dibenzothiophene Derivatives in the Marine Environment

&
Pages 81-96 | Received 29 Mar 1986, Published online: 19 Dec 2006
 

Abstract

Dibenzothiophene (DBT) and related methylated derivatives are known to be among the most persistent and probably the most toxic PAH in the marine environment. Their analysis and their fate by photo-oxidation and biodegradation were studied.

The methylated DBT isomers, provided that they are resolved by high resolution GC, were used as organic markers of oil pollution in oysters. The determination of the relative distribution of the four monomethyl DBT allowed to characterize the source of pollution in an oyster-area in the North Brittany (France).

The fate of methylated DBT compounds was studied in a controlled sea-water enclosure where Arabian light oil was spilled. Analysis of the weathered oil showed that: (i) oil was degraded by photo-oxidation at a rate of 0.004% day; (ii) the half-lives of photolysis of methylated DBT was dependent upon the number of methyl groups on the aromatic nucleus: 8 days for DBT, 20 days for methyl-1 DBT and more than 2 years for trimethylated DBT. Compounds solubilized in the water column were identified as methyl-substituted dibenzothiophene sulfoxides and sulfones by HPLC with synchrofluorescence and GC-flame photometric detection.

The metabolic pathway of DBT was established in vitro. Rat microsomes transformed this substrate to DBT-5-oxide and subsequently to DBT-5-dioxide. Such an enzymatic S-oxidation was shown to be principally Cytochrome-P-450 dependent. It is suggested that the mixed-function oxidase (MFO) activity of marine species could be evaluated by this S-oxidation test in addition to the usual aryl hydrocarbon hydroxylase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.