117
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Determination of methyl mercury in water samples with electromagnetic induction thermal desorption/pyrolysis coupled to atomic fluorescence spectrometry

, &
Pages 1150-1160 | Received 12 Sep 2013, Accepted 14 Mar 2014, Published online: 06 Aug 2014
 

Abstract

A novel non-chromatographic method for the pre-concentration and determination of trace methyl mercury in water samples has been proposed. This method included two main steps: (1) The methyl mercury in sample solution was adsorbed on PDMS of the Fe/SiO2/PDMS bed enrichment column; (2) the analyte was thermally desorbed from the enrichment column and pyrolysed to Hg0 in an iron particle bed pyrolysis column by using electromagnetic induction heating technique, and then detected by an on-line coupled atomic fluorescence detector. Several factors affecting the enrichment column preparation and concentration procedure have been investigated and optimised. Under optimal condition, the detection limit (3σ) was 0.2 ng L–1, along with relative standard deviations of 2.4% (10 ng L–1, N = 11) for the repeatability study. The enrichment factor obtained was 108. The two standard reference materials (GBW08675, GBW10029) were analysed to validate the present method. This method was successfully applied to the determination of ng L–1 methyl mercury in water samples.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.