108
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Dissipation and residue fate of kresoxim-methyl in tobacco leaves and soil under field conditions

, , , , &
Pages 1338-1352 | Received 16 Nov 2014, Accepted 24 Aug 2015, Published online: 27 Oct 2015
 

ABSTRACT

The fate of kresoxim-methyl was studied in a tobacco field ecosystem, and a simple and reliable method was developed for the determination of kresoxim-methyl in soil, green and cured tobacco leaves. Kresoxim-methyl residues were extracted from samples with petroleum ether, and determined by gas chromatography (GC) coupled with an electron capture detector (ECD). Kresoxim-methyl (30% suspension concentration) was applied at 150 g a.i. ha–1 (the recommended high dosage) and 225 g a.i. ha–1 (1.5 times the recommended high dosage) in the experimental fields in Huishui and Changsha in China. The limits of detection (LODs) and limits of quantification (LOQs) of kresoxim-methyl in green tobacco leaves, cured tobacco leaves and soil were 0.012 and 0.04 mg kg–1, 0.12 and 0.4 mg kg–1, and 0.0015 and 0.005 mg kg–1, respectively. The average recoveries were 84.5% to 95.7%, 79.8% to 94.3% and 83.3% to 93.8% with relative standard deviations (RSDs) less than 10% in green tobacco leaves at four spiked levels (0.04, 0.2, 2 and 8 mg kg–1), cured tobacco leaves at three spiked levels (0.4, 1 and 10 mg kg–1) and soil at three spiked levels (0.005, 0.05 and 0.5 mg kg–1), respectively. The results showed that the half-lives of kresoxim-methyl in green tobacco leaves and soil were 1.2–5.3 days and 6.7–10.4 days, respectively. At harvest, kresoxim-methyl residues in cured tobacco leaves samples collected 21 days after the last application at the recommended dosage were below 1.0 mg kg–1. These results could help establish appropriate application frequency and harvest intervals in the use of kresoxim-methyl on tobacco plants.

Additional information

Funding

The authors would like to thank the Special Fund for Agro-scientific Research in the Public Interest [No. 201203022], the National Natural Science Foundation of China [No. 21402034] and the Science and Technology Programs of Guizhou Province [No. 20147664] for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.