383
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

HPLC-SEC: a new approach to characterise complex wastewater effluents

, &
Pages 257-270 | Received 10 Sep 2015, Accepted 25 Jan 2016, Published online: 25 Feb 2016
 

ABSTRACT

This work investigates the use of HPLC-SEC to characterise dissolved organic matter (DOM) of complex wastewater effluents. A silica-based column, sodium acetate eluent and multiple detections were employed: UV-254 absorbance for humictype, and tryptophan-like (Ex/Em = 270/355) and tyrosine-like (Ex/Em = 270/310) fluorescence for protein type compounds. Effects of eluent pH, eluent ionic strength and injection volume on separation efficiency were tested. Humic-type and protein-type fractions were clearly differentiated and eluted within and out of calibration range. Eluent ionic strength had the greatest influence on global resolution; the lowest eluent concentration of 0.01 M produced the best separation for all wastewater effluents tested at any detection. UV-254 absorbance was higher at neutral and basic eluent pH while tryptophan-like fluorescence depended on the sample composition rather than on the eluent pH or ionic strength. Tyrosine-like fluorescence decreased significantly with the increase of eluent ionic strength. Accurate molecular weight measurements could not be done, the separation being influenced by secondary interactions, but could be approximated using separate calibrations with sodium salts of polystyrene-sulfonates and protein standards. The results show that this method is suitable for determining DOM in wastewater at low eluent concentrations (up to 0.03 M), at neutral or slightly basic pH.

Acknowledgements

We thank Outi Kaarela and Raini Kiukas for their help with the sampling.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was supported (Hilda Szabo) by the Maj- and Tor Nessling Foundation [2005086] and the Finnish Cultural Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.